Things You Can Assume From a Diagram

Things You CAN'T Assume From a Diagram

I. For each picture list the facts you can assume from it.

II. Based on the picture alone, determine if each statement is true or false.

5.
$$\overline{MO} \cong \overline{OE}$$

3.
$$T$$
 is between E and H .

8. $\angle MTH$ is a right angle.

- 1. $\angle AEB$ is an acute angle. 6. $\angle BEC$ and $\angle ECB$ are supplementary.

2.
$$\overline{AE} \parallel \overline{BC}$$

7. $\angle AEB$ and $\angle BEC$ are complementary.

8. C is the midpoint of \overline{BD} .

9. $\angle BCE$ and $\angle ECD$ are a linear pair.

10. $\angle ABE$ and $\angle EBC$ are complementary.

Proofs Worksheet #1

On a separate paper, write a two-column proof for each problem 1-5. Follow the plan provided for help.

1. Given:
$$\overline{RT} \cong \overline{SU}$$
 R S T U

Prove: RS = TU

Plan: Use the definition of congruent segments to write the given information in terms of lengths. Next use the Segment Addition Postulate to write RT in terms of RS + ST and SU as ST + TU. Substitute those into the given information and use the Subtraction Property of Equality to eliminate ST and leave RS = TU.

2. Given:
$$m \angle 5 = 47^{\circ}$$

Prove: $m \angle 6 = 133^{\circ}$ M 6 5 S

Plan: Use the Linear Pair Theorem to show that $\angle 5$ and $\angle 6$ are supplementary. Then use the definition of supplementary angles to show that their measures add up to 180° . Finally use substitution and then subtraction to arrive at the "Prove" statement.

3. Given:
$$AB = BC$$
 $BC = BD$

Prove: B is the midpoint of \overline{AD}
 $A = B \setminus C$

Plan: Write the "Given" information and use the transitive property to show that AB=BD. Then use the definition of congruence to show that the segments are congruent and the definition of midpoint to finish the proof.

4. Given:
$$\ell$$
 bisects \overline{MN} at P
Prove: MP = PN

Plan: Use the definition of bisect to show the two smaller segments are congruent. Then use the definition of congruence to show that their lengths are equal.

Plan: Use the definition of supplementary angles and congruent angles to write the given information in terms of angle measures. Next use substitution to show that $m \angle 3 + m \angle 2 = 180^{\circ}$. Then use the definition of supplementary angles for the conclusion.

P 113 (4, 7, 8)

4. Fill in the blanks to complete the two-column proof.

Given:
$$\angle 2 \cong \angle 3$$

Prove: $\angle 1$ and $\angle 3$ are supplementary.

Proof:

Statements	Reasons
1. ∠2 ≅ ∠3	1. Given
2. m∠2 = m∠3	2. a. ?
3. b. <u>?</u>	3. Lin. Pair Thm.
4. m∠1 + m∠2 = 180°	4. Def. of supp. 🛦
5. m∠1 + m∠3 = 180°	5. c. ? Steps 2, 4
6. d. ?	6. Def. of supp. 🛦

Fill in the blanks to complete each two-column proof.

7. Given: ∠1 and∠2 are supplementary, and $\angle 3$ and $\angle 4$ are supplementary.

$$\angle 2 \cong \angle 3$$

Prove: $\angle 1 \cong \angle 4$

Proof:

Statements	Reasons
 ∠1 and ∠2 are supplementary. ∠3 and ∠4 are supplementary. 	1. Given
2. a. <u>?</u>	2. Def. of supp. 🛦
3. m∠1 + m∠2 = m∠3 + m∠4	3. b?
4. ∠2 ≅ ∠3	4. Given
5. m∠2 = m∠3	5. Def. of ≅ &
6. c. <u>?</u>	6. Subtr. Prop. of = <i>Steps 3, 5</i>
7. ∠1 ≅ ∠4	7. d. ?

8. Given: $\angle BAC$ is a right angle. $\angle 2 \cong \angle 3$ Prove: $\angle 1$ and $\angle 3$ are complementary.

7. $m\angle 1 + m\angle 3 = 90^{\circ}$

8. e. ?

Proof:

8. Def. of comp. &

Given: $m \angle 2 = 2(m \angle 1)$

Prove: $m \angle 1 = 60^{\circ}$

Given: \overline{AD} bisects $\angle BAC$

∡1≅∡3

Prove: $\angle 2 \cong \angle 3$

14.

D

15.

Given: $\angle ABC$ is a right angle

Prove: ∠1 and ∠2 are complementary

Given: $\overline{CD} \cong \overline{EF}$

 $\overline{CD} \cong \overline{FG}$

Prove: F is the midpoint of \overline{EG}

17.

Given: KU = HF

Prove: $\overline{KH} \cong \overline{UF}$

18.

Given: ∠ABD and ∠CDB are right angles

 $m \angle 2 = m \angle 4$

Prove: $m \angle 1 = m \angle 3$

19.

Given: $m \angle ABC = m \angle CBD$

Prove: \overrightarrow{BC} is the angle bisector of $\angle ABD$

20.

Given: $m \angle ABE = m \angle CBE$

Prove: $\angle ABD$ and $\angle DBE$ are complementary