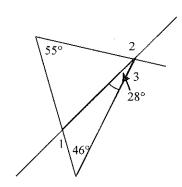
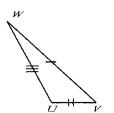

Monday's Test (Calculator)

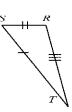
Tuesday's Test (Small Journal)

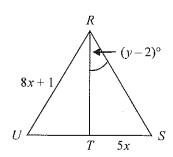


Given:
$$\overline{BC} \cong \overline{CD}$$

$$\overline{AC}$$
 bisects $\angle BCD$

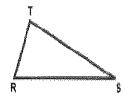

Prove:
$$\triangle ABC \cong \triangle ADC$$

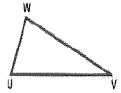

1. Find each measure: $m \angle 1$, $m \angle 2$, $m \angle 3$


2. Identify the congruent triangles in the figure and state the reason.

$$\Delta SRT \cong$$
_____by

 $3.\Delta RSU$ is an equilateral triangle. RT bisects US. Find x and y.


MULTIPLE CHOICE


4. In the figure shown RT \cong UW ε Which additional information would be enough to prove that Δ RST \cong Δ UVW?

G. RS
$$\cong$$
 UV

J.
$$\overline{ST} \cong \overline{UV}$$

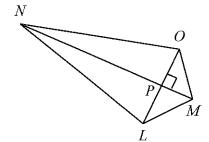
______ 5. Given that ΔJUD \cong ΔSON

Which statement below is <u>not</u> necessarily true, based on the information above?

A.
$$\overline{JD} \cong \overline{SN}$$

B.
$$\overline{UD} \cong \overline{ON}$$

$$D. \ \angle D \cong \angle N$$

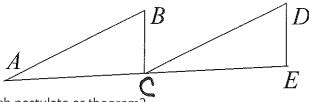

6. Given: P is the midpoint of OL and NM \perp OL. Which of the following is a true statement?

F.
$$\triangle$$
MOP \cong \triangle MLP by SSS

G.
$$\triangle$$
MOP \cong \triangle MLP by ASA

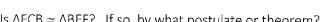
H.
$$\triangle NPO \cong \triangle NLP$$
 by SAS

J.
$$\triangle$$
MOP \cong \triangle MLP by SAS

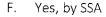


7. Given: $\triangle ABC \cong \triangle CDE$

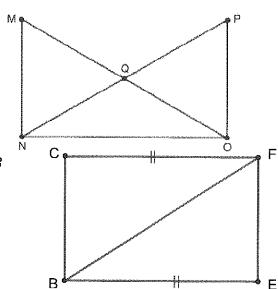
Prove: $\overline{AB} \parallel \overline{CD}$

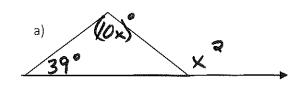

_8.Given: MN ≅ PO and MN || PO

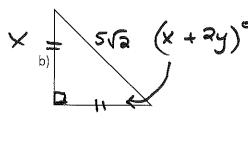
Is the statement $\triangle MNQ \cong \triangle OPQ$ true and if so, by which postulate or theorem?



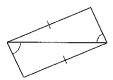
- A. No, they are not congruent
- B. Yes, by ASA or AAS
- C. Yes, by SAS
- D. Yes, by SSS

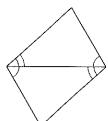

9. Given: \overline{CF} | \overline{BE} and $\overline{CF} \cong \overline{EB}$


Is $\Delta FCB \cong \Delta BEF$? If so, by what postulate or theorem?

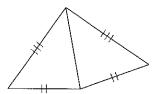

- G. Yes, by SAS
- H. No they are not congruent
- J. Yes, by SSS

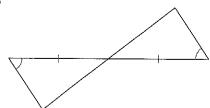
- 10. The total distance from Keith's home to the office, then to the gym, and then home is 44 miles. The distance from his home to the office is 6 miles more than the distance from the office to the gym. The distance from the gym to his home.
- 11. Find the value of x and y.

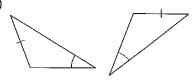

χ=

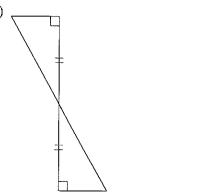

y=____

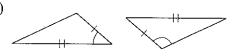
State if the two triangles are congruent. If they are, state how you know.

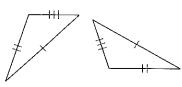

1)

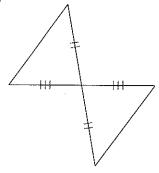

2)

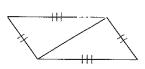

3)


4)


5)


6


7)


8)

9)

10)

11.

